3. Sentiment Analysis Engine

NLP Processing Pipeline

The Sentiment Analysis Engine implements state-of-the-art natural language processing methodologies utilizing transformer architectures for multi-platform sentiment analysis. The system employs sophisticated preprocessing techniques and context-aware sentiment scoring.

Model Architecture

BERT_CONFIG = {
    'model_type': 'finbert-sentiment',
    'max_sequence_length': 512,
    'batch_size': 32,
    'embedding_dim': 768,
    'attention_heads': 12,
    'transformer_layers': 6
}

Preprocessing Pipeline

The system implements advanced text normalization and feature extraction:

class NLPProcessor:
    def __init__(
        self,
        language_model: str = "finbert-sentiment",
        min_confidence: float = 0.75,
        cache_size: int = 10000
    ):
        self.sentiment_classifier = pipeline(
            "sentiment-analysis",
            model=language_model
        )
        self.nlp = spacy.load("en_core_web_sm")
        self.crypto_lexicon = self._load_crypto_lexicon()
        self.pattern_windows = defaultdict(
            lambda: deque(maxlen=1000)
        )

Multi-Platform Data Aggregation

The social scraper implements rate-limited API interactions with multiple platforms:

Platform Configuration

Embedding Model Architecture

The system utilizes custom embedding models for crypto-specific sentiment analysis:

Model Parameters

Feature Extraction Pipeline

Performance Characteristics

Error Handling

The system implements sophisticated error recovery mechanisms:

Monitoring and Metrics

The engine exposes detailed performance metrics:

Data Quality Assurance

The system maintains strict data quality standards through automated validation and filtering mechanisms, ensuring high-quality input for sentiment analysis processing.

Last updated