3. Sentiment Analysis Engine
NLP Processing Pipeline
The Sentiment Analysis Engine implements state-of-the-art natural language processing methodologies utilizing transformer architectures for multi-platform sentiment analysis. The system employs sophisticated preprocessing techniques and context-aware sentiment scoring.
Model Architecture
BERT_CONFIG = {
'model_type': 'finbert-sentiment',
'max_sequence_length': 512,
'batch_size': 32,
'embedding_dim': 768,
'attention_heads': 12,
'transformer_layers': 6
}
Preprocessing Pipeline
The system implements advanced text normalization and feature extraction:
class NLPProcessor:
def __init__(
self,
language_model: str = "finbert-sentiment",
min_confidence: float = 0.75,
cache_size: int = 10000
):
self.sentiment_classifier = pipeline(
"sentiment-analysis",
model=language_model
)
self.nlp = spacy.load("en_core_web_sm")
self.crypto_lexicon = self._load_crypto_lexicon()
self.pattern_windows = defaultdict(
lambda: deque(maxlen=1000)
)
Multi-Platform Data Aggregation
The social scraper implements rate-limited API interactions with multiple platforms:
Platform Configuration
Rate Limits:
twitter:
requests_per_minute: 60
max_results_per_request: 100
telegram:
requests_per_minute: 30
batch_size: 50
discord:
requests_per_minute: 50
message_history_limit: 100
Cache Configuration:
tweet_cache_duration: 900 # seconds
user_cache_duration: 3600 # seconds
sentiment_cache_duration: 300 # seconds
Embedding Model Architecture
The system utilizes custom embedding models for crypto-specific sentiment analysis:
Model Parameters
EMBEDDING_CONFIG = {
'vocab_size': 50000,
'max_position_embeddings': 512,
'hidden_size': 768,
'intermediate_size': 3072,
'num_attention_heads': 12,
'num_hidden_layers': 6,
'type_vocab_size': 2
}
Feature Extraction Pipeline
async def _analyze_sentiment_signal(
self,
window_data: List[MarketCondition]
) -> float:
"""Analyze sentiment signal in time window.
Args:
window_data: List of market conditions
Returns:
Float sentiment signal score
"""
sentiment_scores = [d.sentiment_score for d in window_data]
weights = np.linspace(0.5, 1.0, len(sentiment_scores))
weighted_sentiment = np.average(sentiment_scores, weights=weights)
return float(weighted_sentiment)
Performance Characteristics
Processing Metrics:
Throughput: 100+ texts/second
Latency: <50ms per inference
Batch Processing: 32 samples/batch
Memory Usage: ~4GB RAM per instance
Model Performance:
Accuracy: >0.85 for sentiment classification
F1 Score: >0.82 for multi-class prediction
ROC-AUC: >0.88 for binary classification
Error Handling
The system implements sophisticated error recovery mechanisms:
ERROR_HANDLING = {
'max_retries': 3,
'backoff_factor': 2,
'timeout': 30,
'circuit_breaker': {
'failure_threshold': 5,
'reset_timeout': 60
}
}
Monitoring and Metrics
The engine exposes detailed performance metrics:
Prometheus Metrics:
- sentiment_analysis_duration_seconds
- embedding_generation_time
- cache_hit_ratio
- api_request_latency
- model_inference_time
Alert Configurations:
- HighLatencyAlert: >100ms processing
- LowAccuracyAlert: <0.8 confidence
- APIFailureAlert: >5% error rate
- ResourceExhaustionAlert: >90% memory
Data Quality Assurance
QUALITY_THRESHOLDS = {
'min_text_length': 10,
'max_text_length': 1000,
'min_confidence': 0.7,
'language_detection_threshold': 0.9,
'spam_probability_threshold': 0.8
}
The system maintains strict data quality standards through automated validation and filtering mechanisms, ensuring high-quality input for sentiment analysis processing.
Last updated