3. Sentiment Analysis Engine
NLP Processing Pipeline
The Sentiment Analysis Engine implements state-of-the-art natural language processing methodologies utilizing transformer architectures for multi-platform sentiment analysis. The system employs sophisticated preprocessing techniques and context-aware sentiment scoring.
Model Architecture
BERT_CONFIG = {
'model_type': 'finbert-sentiment',
'max_sequence_length': 512,
'batch_size': 32,
'embedding_dim': 768,
'attention_heads': 12,
'transformer_layers': 6
}Preprocessing Pipeline
The system implements advanced text normalization and feature extraction:
class NLPProcessor:
def __init__(
self,
language_model: str = "finbert-sentiment",
min_confidence: float = 0.75,
cache_size: int = 10000
):
self.sentiment_classifier = pipeline(
"sentiment-analysis",
model=language_model
)
self.nlp = spacy.load("en_core_web_sm")
self.crypto_lexicon = self._load_crypto_lexicon()
self.pattern_windows = defaultdict(
lambda: deque(maxlen=1000)
)Multi-Platform Data Aggregation
The social scraper implements rate-limited API interactions with multiple platforms:
Platform Configuration
Embedding Model Architecture
The system utilizes custom embedding models for crypto-specific sentiment analysis:
Model Parameters
Feature Extraction Pipeline
Performance Characteristics
Error Handling
The system implements sophisticated error recovery mechanisms:
Monitoring and Metrics
The engine exposes detailed performance metrics:
Data Quality Assurance
The system maintains strict data quality standards through automated validation and filtering mechanisms, ensuring high-quality input for sentiment analysis processing.
Last updated
