LogoLogo
  • 1. Introduction to KADES
  • II. Core System Components
    • 1. Chain Analysis Engine
    • 2. Temporal Analysis Framework
    • 3. Sentiment Analysis Engine
    • 4. Whale Detection System
    • 5. Score Aggregation Framework
  • III. API Integration
  • IV. Deployment Architecture
  • V. Advanced Usage Scenarios
  • VI. Company
    • 1. About KADES
    • 2. Vision & Mission
    • 3. Terms of Service
    • 4. Privacy Policy
Powered by GitBook
On this page
  • Accumulation Pattern Recognition
  • Detection Parameters
  • Pattern Recognition Implementation
  • Distribution Phase Analysis
  • Analysis Metrics
  • Stealth Movement Detection
  • Performance Optimization
  • Resource Management
  • Caching Strategy
  • System Monitoring
  • Error Handling
  1. II. Core System Components

4. Whale Detection System

Accumulation Pattern Recognition

The Whale Detection System implements sophisticated algorithms for identifying strategic accumulation behaviors utilizing advanced pattern recognition methodologies. The system processes on-chain data through multiple analysis layers for comprehensive whale activity detection.

Detection Parameters

WHALE_THRESHOLDS = {
    'min_whale_size_usd': 50000,
    'analysis_window': 24 * 60 * 60,  # 24 hours
    'update_interval': 60,  # seconds
    'confidence_threshold': 0.75
}

Pattern Recognition Implementation

class WhalePatternRecognizer:
    def __init__(
        self,
        rpc_client: AsyncClient,
        min_whale_size_usd: float = 50000,
        analysis_window: int = 24 * 60 * 60,
        update_interval: int = 60,
        confidence_threshold: float = 0.75
    ):
        self.thresholds = {
            'stealth_accumulation': {
                'min_transactions': 5,
                'max_size_ratio': 0.1,
                'time_window': 3600
            },
            'distribution': {
                'min_transactions': 10,
                'min_unique_receivers': 5,
                'time_window': 7200
            },
            'wash_trading': {
                'min_cycle_length': 3,
                'max_time_between': 300,
                'min_volume': 1000
            }
        }

Distribution Phase Analysis

The system implements sophisticated metrics for distribution detection:

Analysis Metrics

DISTRIBUTION_METRICS = {
    'volume_threshold': 0.05,  # 5% of total supply
    'time_window': 7200,      # 2 hours
    'receiver_diversity': 0.7, # Minimum unique receiver ratio
    'volume_distribution': {
        'min_transactions': 10,
        'max_size_variance': 0.3
    }
}

Stealth Movement Detection

Implementation of sophisticated algorithms for detecting concealed accumulation:

async def _detect_stealth_accumulation(
    self,
    token_address: str
) -> List[WhalePattern]:
    """Detect stealth accumulation patterns.
    
    Args:
        token_address: Token contract address
        
    Returns:
        List of detected whale patterns
    """
    patterns = []
    
    wallet_transactions = self._group_transactions_by_wallet(
        token_address,
        self.thresholds['stealth_accumulation']['time_window']
    )
    
    for wallet_address, transactions in wallet_transactions.items():
        if self._is_stealth_pattern(
            transactions,
            self.thresholds['stealth_accumulation']
        ):
            pattern = WhalePattern(
                pattern_type=WhaleActivityType.STEALTH_ACCUMULATION,
                confidence_score=self._calculate_stealth_confidence(
                    transactions
                ),
                risk_score=self._calculate_pattern_risk(
                    WhaleActivityType.STEALTH_ACCUMULATION,
                    transactions
                )
            )
            patterns.append(pattern)
    
    return patterns

Performance Optimization

Resource Management

Resource Allocation:
    Memory Footprint: 4GB per instance
    CPU Utilization: 40-60% optimal
    Network Bandwidth: 50Mbps sustained

Processing Metrics:
    Transaction Analysis: <100ms
    Pattern Detection: <200ms
    Alert Generation: <50ms

Caching Strategy

CACHE_CONFIG = {
    'wallet_data': {
        'ttl': 300,      # 5 minutes
        'max_size': 5000 # entries
    },
    'pattern_data': {
        'ttl': 600,      # 10 minutes
        'max_size': 1000 # entries
    },
    'metrics': {
        'ttl': 60,       # 1 minute
        'max_size': 10000 # entries
    }
}

System Monitoring

The engine exposes comprehensive metrics through standardized endpoints:

Prometheus Metrics:
    - whale_detection_latency_seconds
    - pattern_recognition_duration
    - wallet_analysis_queue_size
    - memory_utilization_bytes
    - cache_hit_ratio

Alert Configurations:
    - PatternDetectionDelay: >500ms
    - HighMemoryUsage: >85% utilization
    - ProcessingQueueOverflow: >1000 pending
    - ErrorRateHigh: >2% error rate

Error Handling

ERROR_HANDLING = {
    'max_retries': 3,
    'backoff_factor': 2,
    'timeout': 30,
    'circuit_breaker': {
        'failure_threshold': 5,
        'reset_timeout': 60,
        'half_open_timeout': 30
    }
}

The system implements sophisticated error recovery mechanisms with exponential backoff strategies and circuit breakers to prevent cascade failures during high-load scenarios.

Previous3. Sentiment Analysis EngineNext5. Score Aggregation Framework

Last updated 5 days ago