4. Whale Detection System

Accumulation Pattern Recognition

The Whale Detection System implements sophisticated algorithms for identifying strategic accumulation behaviors utilizing advanced pattern recognition methodologies. The system processes on-chain data through multiple analysis layers for comprehensive whale activity detection.

Detection Parameters

WHALE_THRESHOLDS = {
    'min_whale_size_usd': 50000,
    'analysis_window': 24 * 60 * 60,  # 24 hours
    'update_interval': 60,  # seconds
    'confidence_threshold': 0.75
}

Pattern Recognition Implementation

class WhalePatternRecognizer:
    def __init__(
        self,
        rpc_client: AsyncClient,
        min_whale_size_usd: float = 50000,
        analysis_window: int = 24 * 60 * 60,
        update_interval: int = 60,
        confidence_threshold: float = 0.75
    ):
        self.thresholds = {
            'stealth_accumulation': {
                'min_transactions': 5,
                'max_size_ratio': 0.1,
                'time_window': 3600
            },
            'distribution': {
                'min_transactions': 10,
                'min_unique_receivers': 5,
                'time_window': 7200
            },
            'wash_trading': {
                'min_cycle_length': 3,
                'max_time_between': 300,
                'min_volume': 1000
            }
        }

Distribution Phase Analysis

The system implements sophisticated metrics for distribution detection:

Analysis Metrics

Stealth Movement Detection

Implementation of sophisticated algorithms for detecting concealed accumulation:

Performance Optimization

Resource Management

Caching Strategy

System Monitoring

The engine exposes comprehensive metrics through standardized endpoints:

Error Handling

The system implements sophisticated error recovery mechanisms with exponential backoff strategies and circuit breakers to prevent cascade failures during high-load scenarios.

Last updated