4. Whale Detection System
Accumulation Pattern Recognition
The Whale Detection System implements sophisticated algorithms for identifying strategic accumulation behaviors utilizing advanced pattern recognition methodologies. The system processes on-chain data through multiple analysis layers for comprehensive whale activity detection.
Detection Parameters
WHALE_THRESHOLDS = {
'min_whale_size_usd': 50000,
'analysis_window': 24 * 60 * 60, # 24 hours
'update_interval': 60, # seconds
'confidence_threshold': 0.75
}Pattern Recognition Implementation
class WhalePatternRecognizer:
def __init__(
self,
rpc_client: AsyncClient,
min_whale_size_usd: float = 50000,
analysis_window: int = 24 * 60 * 60,
update_interval: int = 60,
confidence_threshold: float = 0.75
):
self.thresholds = {
'stealth_accumulation': {
'min_transactions': 5,
'max_size_ratio': 0.1,
'time_window': 3600
},
'distribution': {
'min_transactions': 10,
'min_unique_receivers': 5,
'time_window': 7200
},
'wash_trading': {
'min_cycle_length': 3,
'max_time_between': 300,
'min_volume': 1000
}
}Distribution Phase Analysis
The system implements sophisticated metrics for distribution detection:
Analysis Metrics
Stealth Movement Detection
Implementation of sophisticated algorithms for detecting concealed accumulation:
Performance Optimization
Resource Management
Caching Strategy
System Monitoring
The engine exposes comprehensive metrics through standardized endpoints:
Error Handling
The system implements sophisticated error recovery mechanisms with exponential backoff strategies and circuit breakers to prevent cascade failures during high-load scenarios.
Last updated
