5. Score Aggregation Framework
Metric Computation Systems
The Score Aggregation Framework implements sophisticated algorithms for combining multiple analysis vectors into comprehensive risk metrics. The system utilizes weighted probabilistic models for score aggregation and risk assessment.
Scoring Configuration
WEIGHT_CONFIG = {
'chain_analysis': 0.30,
'sentiment': 0.25,
'temporal': 0.25,
'whale': 0.20
}
RISK_THRESHOLDS = {
'low': 0.25,
'medium': 0.50,
'high': 0.75,
'critical': 0.90
}
Implementation Details
class MetricCalculator:
def __init__(
self,
update_interval: int = 60,
metric_weights: Optional[Dict[str, float]] = None
):
self.update_interval = update_interval
self.metric_weights = metric_weights or {
'chain': 0.4,
'sentiment': 0.3,
'market': 0.3
}
self.metric_history = defaultdict(list)
async def calculate_metrics(
self,
token_address: str,
chain_data: Dict,
sentiment_data: Dict,
market_data: Dict
) -> AggregatedMetrics:
"""Calculate aggregated metrics from multiple sources."""
Risk Assessment Mechanisms
The system implements sophisticated risk scoring algorithms:
RISK_SCORING = {
'confidence_threshold': 0.7,
'min_data_points': 30,
'time_decay_factor': 0.95,
'volatility_impact': 0.3
}
Score Calculation
async def _calculate_composite_score(
self,
chain_metrics: Dict[str, float],
sentiment_metrics: Dict[str, float],
market_metrics: Dict[str, float]
) -> float:
"""Calculate composite score from all metrics."""
scores = {
'chain': np.mean(list(chain_metrics.values())),
'sentiment': np.mean(list(sentiment_metrics.values())),
'market': np.mean(list(market_metrics.values()))
}
composite = sum(
scores[key] * self.metric_weights[key]
for key in scores
)
return float(composite)
Index Generation Pipeline
Configuration Parameters
INDEX_CONFIG = {
'update_interval': 300, # 5 minutes
'smoothing_factor': 0.1,
'history_length': 1440 # 24 hours
}
Implementation Example
class IndexGenerator:
def __init__(
self,
smoothing_window: str = '6h',
update_frequency: str = '5min'
):
self.historical_data = pd.DataFrame({
'timestamp': pd.date_range(
start='2024-01-01',
periods=1000,
freq='5min'
),
'composite_risk': np.random.random(1000),
'trading_volume': np.random.random(1000) * 1000000,
'price_changes': np.random.random(1000) * 0.1 - 0.05
})
Performance Characteristics
Processing Metrics:
Score Calculation: <20ms
Risk Assessment: <50ms
Index Generation: <100ms
Update Frequency: 5 minutes
Resource Utilization:
Memory Usage: ~2GB per instance
CPU Usage: 30-50% optimal
Network I/O: 20Mbps sustained
Monitoring Integration
The framework exposes comprehensive metrics:
Prometheus Metrics:
- score_calculation_duration_seconds
- risk_assessment_latency
- index_generation_time
- data_freshness_lag
- component_health_status
Alert Configurations:
- HighLatencyAlert: >100ms processing
- StaleDataAlert: >5min lag
- ComponentFailureAlert: health check failure
- AccuracyDegradationAlert: confidence drop
Data Quality Assurance
QUALITY_THRESHOLDS = {
'min_confidence': 0.7,
'min_data_points': 30,
'max_missing_ratio': 0.1,
'staleness_threshold': 300 # seconds
}
The system maintains strict data quality standards through automated validation and monitoring mechanisms, ensuring reliable score aggregation and risk assessment.
Last updated